Through-bond photoinduced electron transfer in a porphyrin-fullerene conjugate held by a Hamilton type hydrogen bonding motif.
نویسندگان
چکیده
Control over the occurrence of through-bond electron transfer in self-assembled donor-acceptor conjugates is often difficult, since through-space electron transfer also competes due to the flexible nature of the spacer used to link the entities. In the present study, we have constructed a self-assembled donor-acceptor conjugate held solely by complementary hydrogen bonding and established through-bond electron transfer. The protocol used here is a Hamilton type hydrogen bonding motif involving self-assembly of a carboxylic acid functionalized porphyrin and 2-aminopyridine functionalized fullerene. Owing to the presence of two-point hydrogen bonds, the structure of the dyad is free from rotation with a donor-acceptor distance positioned appropriately to justify the through-bond electron transfer. Detailed spectral, computational and photochemical studies reveal efficient photoinduced charge separation and slow charge recombination in the studied conjugate, thus, bringing out the fundamental advantages of the directional hydrogen-bonding in the construction of donor-acceptor conjugates based on biomimetic principles and their functional role in governing electron transfer events.
منابع مشابه
Synthesis and photophysics of a porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonding.
A novel porphyrin-fullerene dyad assembled through Watson-Crick hydrogen bonds is described; this system undergoes photoinduced electron transfer upon irradiation with visible light to produce a charge separated state that is substantially longer lived than that of previous dyads of this type.
متن کاملSelf-Sorting of cyclic peptide homodimers into a heterodimeric assembly featuring an efficient photoinduced intramolecular electron-transfer process.
We describe the thermodynamic characterisation of the self-sorting process experienced by two homodimers assembled by hydrogen-bonding interactions through their cyclopeptide scaffolds and decorated with Zn-porphyrin and fullerene units into a heterodimeric assembly that contains one electron-donor (Zn–porphyrin) and one electron-acceptor group (fullerene). The fluorescence of the Zn-porphyrin ...
متن کاملHydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts
Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...
متن کامل[60]fullerene-stoppered porphyrinorotaxanes: pronounced elongation of charge-separated-state lifetimes.
A series of Sauvage-type porphyrinorotaxanes containing [60]fullerene stoppers have been synthesized by a convergent route. Photoinduced energy transfer and electron-transfer reactions in these rotaxanes yield long-distance charge-separated radical-pair states, whose lifetimes in solution at ambient temperatures are as high as 32 mus, depending on the distance between the fullerene and zinc por...
متن کاملA supramolecular photosynthetic triad of slipped cofacial porphyrin dimer, ferrocene, and fullerene.
A supramolecular triad consisting of self-assembled imidazolyl-zinc-porphyrin dimer, ferrocene, and fullerene was successfully constructed, resulting in long-lived charge separated species after efficient photoinduced electron transfer and charge shift reactions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2009